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Bilocal Dynamics for Self-Avoiding Walks
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We introduce several bilocal algorithms for lattice self-avoiding walks. We
discuss their ergodicity in different confined geometries, for instance in strips
and in slabs. A short discussion of the dynamical properties in the absence of
interactions is given.
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1. INTRODUCTION

The lattice self-avoiding walk (SAW) is a well-known model for the critical
behaviour of a homopolymer in a solvent(1, 2) and it has been extensively
used in the study of several properties of heteropolymers.(3, 4) Experiments
are usually performed using monodisperse solutions, and thus, extensive
work has been done to devise Monte Carlo algorithms to simulate fixed-
length SAWs. Historically, the earliest algorithms used a local dynamics:(5)

at each step, a small part of the walk (usually 2-4 consecutive beads) was
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modified. Although easy to implement, these algorithms suffer a very
serious drawback: as shown by Madras and Sokal, (6) any local algorithm
is not ergodic and simulations span only an exponentially small part of the
phase space. A different algorithm was inspired by an attempt to model the
true dynamics of the polymer in the solvent: the reptation algorithm.(7�10)

However, it was soon realized(8, 9) that also this algorithm is not ergodic
because of the possibility of configurations with trapped endpoints.6 These
ergodicity problems can be solved using chain-growth algorithms(12�14) or
non-local algorithms.(15�19) In the absence of any interaction, non-local
algorithms are very efficient. For instance, in the pivot algorithm(17) the
autocorrelation time for global observables increases linearly with the
number of steps N, which is the optimal behaviour since it takes a time of
order N simply to write down the walk. On the other hand, they are not
very useful in the presence of strong attraction or in finite geometries.7

In the presence of surfaces, non-local algorithms are not even ergodic
in general. For instance, as we will show, the pivot algorithm is not ergodic
in a strip. Moreover, even when they are ergodic, they are not suited for
the study of surface transitions since non-local moves will generate new
walks with large energy differences and, thus, they will be rejected. There-
fore, the dynamics will be very slow.

Non-local algorithms are also not suited for the study of the behaviour
of homopolymers in the collapsed phase and of heteropolymers near the
folding temperature.(22�24) Indeed, typical configurations are compact and
the probability of success of non-local moves is small. Most of the simula-
tions(25�32) use local dynamics, which is expected to correctly describe the
physical kinetics8 of a polymer in a dilute solution in the absence of
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6 It should be noted that the ergodicity problem is less severe for reptation than for local algo-
rithms. For instance, for reptation one can prove (see ref. 6 and Prop. 9.2.3 in ref. 11) that
the fraction of walks belonging to the ergodicity class of the straight rod is larger than
tN &(#&1)�2. On the other hand, for local algorithms, each ergodicity class contains only an
exponentially small fraction of the walks.

7 An exception is the class of moves introduced in ref. 20 that do not change the position of
the beads but only the connectivity of the walk. However, these moves do not change global
size observables and are of interest only for the study of maximally compact configurations.
A general lower bound on the efficiency of non-local algorithms with a Metropolis test is
given in ref. 21.

8 Non-local algorithms have also been considered. (33�35) However, a non-local dynamics which
involves rigid deformations of a large section of the polymer is unphysical, and therefore
cannot give realistic results for the physical kinetics. Moreover non-local moves become
irrelevant��they are never accepted��as the number of monomers increases.



hydrodynamic interactions.(36, 37) It is however important to stress that all
these algorithms are not ergodic so that systematic deviations are expected.9

In this paper we wish to discuss a family of algorithms that use bilocal
moves: a bilocal move alters at the same time two disjoint small groups of
consecutive sites of the walk that may be very far away. Since a small
number of beads is changed at each step, these algorithms should be
reasonably efficient in the presence of interactions, and thus they can be
used in the study of the collapsed phase and of the folding of hetero-
polymers. They generalize the reptation algorithm and use a more general
class of moves that was introduced by Reiter.(38) Similar moves were intro-
duced in ref. 39 and were applied to the study of ring polymers,10 and in
ref. 33.

We will study in detail the ergodicity of these algorithms and we will
show that, with a proper choice of moves, they are ergodic even in some
constrained geometries, e.g., in strips, slabs, and generalizations thereof.
These results have been obtained for SAWs with nearest-neighbour jumps
on a (hyper-)cubic lattice. However, they can be easily generalized to dif-
ferent lattice models, for instance to the protein model proposed in ref. 40.

The paper is organized as follows. In Section 2 we introduce several
local and bilocal moves and we define three bilocal algorithms. In Section 3
we discuss their ergodicity, determining the minimal set of moves that
make each algorithm ergodic. This is important in order to understand the
dynamical behaviour. Indeed, algorithms that are ergodic only if rarely
accepted or rarely proposed moves are included, are expected a priori to
have a slow dynamics. Section 4 contains a detailed presentation of their
implementation. In the last section we present a brief discussion of the
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9 Reference 28 claims that, at the presently investigated values of N, non-ergodicity effects
should be small. A quantitative study of the Verdier�Stockmayer algorithm in two dimen-
sions(5) was presented in ref. 6. The percentage of walks that do not belong to the ergodicity
class of the straight rod is indeed small, precisely 0.00670, 0.00610, 0.00410 for
N=11, 13, 15. However, it should be noted that this percentage increases with N (each
ergodicity class contains only an exponentially small fraction of the walks(6)) and that the
walks that do not belong to the ergodicity class of the straight rod correspond to compact
configurations: therefore, larger systematic deviations axe expected in the collapsed regime.
If we indicate with cN(n) the number of walks with N steps and n nearest-neighbor contacts
and with dN(n) the corresponding number of walks that do not belong to the ergodicity
class of the straight rod, a good indication of the deviations expected in the presence of
strong attraction is given by RN=dN(nmax)�cN(nmax) and SN(=)=�n en= dN(n)��n en=cN(n).
Here nmax is the maximum number of possible contacts for a given N; clearly RN=SN(�).
For the Verdier�Stockmayer algorithm we considered above, we have RN=3.20, 1.40,
5.80 for N=11, 13, 15, and SN(1)=0.200, 0.200, 0.160 for the same values of N.
Clearly, the systematic error is not completely negligible in the compact regime.

10 However, it should be noted that the algorithm of ref. 39 is not ergodic.



expected dynamic critical behaviour in the absence of interactions. A detailed
numerical study will appear elsewhere.(41)

2. DEFINITION OF THE ALGORITHMS

In this paper we will consider SAWs with fixed number of steps N and
free endpoints in finite geometries.

More precisely, we consider a d-dimensional hyper-cubic lattice, d�2,
and define the following set of lattice points: given an integer D such
that 1�D�d&1, and (d&D) positive integers wD+1 ,..., wd , we define
CD(wD+1 ,..., wd ) as the set of lattice points (n1 ,..., nd ), ni # Z, such that
0�ni�wi , for i=D+1,..., d. We will call11 CD(wD+1 ,..., wd ) a D-dimen-
sional cylinder. If D=(d&1), we will speak of a strip if d=2 and of a slab
if d=3. The number wi will be called the width of the cylinder in the i th
direction. Note that we will always assume D�1, so that at least the first
direction is infinite.

We will then consider SAWs of length N confined inside a cylinder.
A SAW | is a set of N+1 lattice points |(0),..., |(N ) such that: |(i) and
|(i+1) are lattice nearest neighbours; |(i){|( j) for any i{ j; |(i) #
CD(wD+1 ,..., wd ) for all i. We define two different ensembles:

1. the ensemble Ex, N of SAWs of length N such that |(0)=x;

2. the ensemble EN of SAWs of length N such that both endpoints
can be anywhere in the cylinder.

In free space the two ensembles are equivalent as long as one is interested
in properties of the walk itself. In confined geometries they are different
since translation invariance is lost in d&D directions. Both ensembles are
of physical interest: in a slab one can study the statistical properties of
polymers that can move freely between the confining surfaces, or one can
determine the behaviour of polymers grafted at one of the boundaries.

We wish now to define some algorithms that sample these ensembles
of walks. They use local and bilocal moves. A local move is one that
alters only a few consecutive beads of the SAW, leaving the other sites
unchanged. A bilocal move is instead one that alters two disjoint small
groups of consecutive sites of the walk; these two groups may in general be
very far from each other.
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11 In two dimensions, one often calls cylinder a strip with periodic boundary conditions. Note
that the definition given here is different.



File: 822J 657505 . By:SD . Date:11:08:00 . Time:09:57 LOP8M. V8.B. Page 01:01
Codes: 1622 Signs: 986 . Length: 44 pic 2 pts, 186 mm

Fig. 1. All one-bead moves: (A) One-bead flip. (B) 90% end-bond rotation. (C) 180% end-
bond rotation.

In our study we consider three types of local moves (see Figs. 1 and 2):

[L0] One-bead flips in which one internal bead (i.e., |(i), 1�i
�N&1) only is moved.

[L00] Kink rotations (also called crankshaft moves) in which a
three-step kink is rotated. Note that 180% rotations are possible for all
d�2, while 90% rotations are defined only for d�3.

[L1] End-bond rotations in which the last step of the walk is
rotated. In ensemble EN (but not in Ex, N), the same move can also be
applied to the first step of the walk.

We also introduce several types of bilocal moves:

[B22] Kink-transport moves in which a kink is cleaved from the
walk and attached at a pair of neighbouring sites somewhere else along the
walk (see Fig. 3); note that the new kink is allowed to occupy one or both
of the sites abandoned by the old kink.

Fig. 2. Kink rotations or crankshaft moves.

1115Bilocal Dynamics for Self-Avoiding Walks
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Fig. 3. The kink-transport move. A kink has been cleaved from AB and attached at CD.
Note that the new kink is permitted to occupy one or both of the sites abandoned by the old
kink.

[BKE] Kink-end and end-kink reptation moves (see Fig. 4). In the
kink-end reptation move a kink is deleted at one location along the walk
and two new bonds are appended in arbitrary directions at the free
endpoint of the walk. Viceversa, an end-kink reptation move consists in
deleting two bonds from the end of the walk and in inserting a kink, in
arbitrary orientation, at some location along the walk. In ensemble EN , the
same move can also be applied to the first step of the walk.

[BEE] Reptation move (see Fig. 5) in which one bond is deleted
from one end of the walk and a new bond is appended in arbitrary direc-
tion at the other end. The move is allowed in ensemble EN but not in
ensemble Ex, N .

We wish now to define algorithms made up with the moves we have
presented above and that are ergodic. As shown by Madras and Sokal, (6)

there exists no ergodic algorithm made up of local moves. It is therefore
necessary to add some bilocal moves to obtain ergodicity. The oldest bilo-
cal algorithm is the reptation algorithm, which uses only the moves BEE.
As it was soon realized, it is not ergodic due to the presence of walks with

Fig. 4. The kink-end reptation ( � ) and end-kink reptation (�) moves. In (�), a kink has
been cleaved from AB and two new steps have been attached at the end marked X. Note that
the new end steps are permitted to occupy one or both of the sites abandoned by the kink.
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Fig. 5. The reptation move. The head of the walk is indicated by X. The dashed lines
indicate the proposed new step and the abandoned old step.

trapped endpoints. Here we wish to define new bilocal algorithms. We first
consider the ensemble Ex, N . We discuss two algorithms:

v Kink-kink bilocal algorithm. It uses the local moves L0, L1, and the
bilocal moves B22. The local move L1 is applied only to the last point of
the walk, otherwise |(0) would not be kept fixed. We will show that it is
ergodic in two dimensions (under some technical conditions), and that it is
not ergodic in three dimensions due to the possibility of knots. In higher
dimensions its ergodicity is an open problem.

v Kink-end reptation. It uses the moves BKE applied to the last step
of the walk. We will show that it is ergodic in a D-dimensional cylinder for
d�3. In two dimensions it is ergodic only in free space or in the presence
of a single surface, i.e., for D=1 and w2=�. There exists an extension that
is ergodic in a two-dimensional strip: it uses the moves BKE applied to the
last step of the walk and the local moves L0.

It is trivial to modify these algorithms so that the first point is not kept
fixed. It is enough to apply L1 and BKE moves to the first step of the walk,
too. However, these modifications are not ergodic in the ensemble EN :
indeed, L1 and BKE moves never change the parity of the first point. If
there is translation invariance in one infinite direction, this limitation is
irrelevant: all walk properties can still be obtained correctly from the
ensemble of walks in which the parity of |(0) is fixed. However, this is not
the case in the presence of random interactions, since translation invariance
is completely lost. In order to sample the ensemble EN , we introduce a
different algorithm:

v Extended reptation. It uses the moves L0, B22, BEE. We will show
that it is ergodic in two dimensions. The ergodicity for d�3 is an open
problem. In the absence of a definite result, an ergodic extension in d=3
can be obtained by adding BKE moves.

1117Bilocal Dynamics for Self-Avoiding Walks



The ergodicity properties of these algorithms are proved in the next
section. It should be noticed that we have not considered the local moves
L00, which are not necessary for ergodicity, but that can be added to the
moves L0 if one wishes.

The bilocal moves we have introduced above have already been dis-
cussed in the literature. Removals and insertions of kinks were introduced
in refs. 42�45 in order to study cyclic polymers and polymers with fixed
endpoints with varying length N. An ergodic algorithm was introduced by
Reiter:(38) he considers moves L0, L1, B22, BEE, BKE and proves the
ergodicity of the dynamics (his ergodicity proof requires only BKE and
BEE moves) in free space. A similar algorithm was used in ref. 39 in a
study of cyclic polymers, considering L0, L00, and BEE moves. In two
dimensions the algorithm is ergodic even in a strip, as we shall show below,
while in three dimensions it is not ergodic since it does not change the knot
type of the loop. It is unknown if it is ergodic in a given knot class.

3. ERGODICITY

3.1. Definitions

In this section we will prove several ergodicity theorems for the algo-
rithms we have introduced before.

We begin by introducing some definitions, following ref. 11. We make
use of the following notations: We indicate by |[i, j ], 0�i< j�N, the
subwalk connecting |(i) to |( j), i.e., the set of points of the walk |:
[|(k) : i�k� j ]. The lattice link connecting |(i) to |(i+1), 0�i�
N&1, is indicated by 2|(i).

Definition 1. A subwalk |[i, j ], (0�i< j�N ) is a C-turn of | if
j&i�3, |[i+1, j&1] lies on a straight line that is perpendicular to the
steps 2|(i) and 2|( j&1) and 2|(i)=&2|( j&1).

The length of the C-turn is the length of the subwalk.
We say that a C-turn belongs to a line (or surface), or that a line

contains a C-turn, if the segment |[i+1, j&1] lies on the line (or surface).

Definition 2. A C-turn of |, |[i, j ] is obstructed if there is a site
of | lying on the open line segment whose endpoints are |(i) and |( j).
Otherwise it is unobstructed.

Definition 3. The enveloping hyper-rectangle R[|] of the walk | is
the minimal lattice hyper-rectangle containing |. A lattice hyper-rectangle
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is the set of points (x1 ,..., xd ), such that l1�x1�L1 , l2�x2�L2 ,..., ld�xd

�Ld , for some integers l1 , l2 ,..., L1 , L2 ,... .

Definition 4. A walk | is directed if there are no steps that have
opposite directions.

Definition 5. A tower of links of height h�0 is a subwalk |[i, j ]
with j&i=2h+1, 0�i< j�N, such that |[i, i+h] and |[i+1+h, j ]
are segments and |(i) and |( j) are lattice nearest neighbours.

We call the lattice link l connecting |(i) and |( j) the base of the
tower. We denote the tower as T (l, h).

Moreover, we will say that a tower is parallel to a given line if the
segments |[i, i+h] and |[i+1+h, j ] are parallel to this line.

Definition 6. Given a walk | and a tower T (l, h), l connecting
|(i) and |( j), we define the quotient walk |�T (l, h) as the walk with sites
|(0),..., |(i), |( j),..., |(N ).

Definition 7. Given a walk | with a tower T (l, h), let |� =|�T (l, h)
be the quotient walk. If |� is directed, | is said to be quotient-directed.

For the two dimensional proofs we will make extensive use of the
following theorem due to Madras and reported in ref. 11, Theorem 9.7.2,
p. 356:

Theorem 1. In two dimensions, if a walk | has at least one C-turn,
then | has an unobstructed C-turn.

3.2. Ergodicity Properties of the Pivot Algorithm in a
Confined Domain

In this section we want to discuss the ergodicity properties of the pivot
algorithm. Following ref. 17, it is possible to prove that the algorithm is
ergodic in the presence of a single confining surface. More precisely, the
following theorem holds:

Theorem 2. Consider a (d&1)-dimensional cylinder in d dimen-
sions. The pivot algorithm is ergodic in Ex, N if N<max(|d (0), wd&|d (0)),
where |d (0) is the d th component of |(0) and N is the number of steps
of the walk.

1119Bilocal Dynamics for Self-Avoiding Walks



However, the algorithm is not expected to be ergodic in more con-
strained geometries. We will now show that the pivot algorithm is not
ergodic in a two-dimensional strip of width w, for N>(w+1)2. Indeed,
pick a bead |(i) and let d be its distance from the boundary y=0. Then,
consider the reflections with respect to the diagonals and the \90% rota-
tions. These are the only transformations that change the number of links
that are oriented in the \x and in the \y directions. It is easy to see that
these moves are successful only if either &d�|( j)x&|(i)x�w&d or
d&w�|( j)x&|(i)x�d for all j>i. But this cannot be true if N&i>
(w+1)2. Consider now the subwalk 0=|[0, N&(w+1)2]. The previous
argument shows that the number of links belonging to 0 that are directed
in the \y or in the \x is fixed. Thus, the algorithm is not ergodic. We
believe, although we have not been able to prove, that the algorithm is also
not ergodic in a three-dimensional slab.

3.3. Ergodicity of the Kink-Kink Bilocal Algorithm

We will now prove ergodicity in Ex, N of the kink-kink bilocal algo-
rithm in two dimensions in a strip of width w#w2 . To simplify writing the
walks, we indicate by N and S the positive and negative y-direction, and
by E and W the positive and negative x-direction. Let us begin by proving
the following lemmas. In all cases we assume d=2.

Lemma 1. Consider a directed walk | and suppose that the dis-
tance between |(0) and at least one boundary of the strip is larger than or
equal to 2. Then, | can be reduced to any given rod using the kink-kink
bilocal algorithm.

Proof. Using L0 and L1 moves, it is trivial to show that it is possible
to reduce the walk either to WN or to EN. We will now show that it is
possible to deform one rod into the other. If N�2, the procedure is trivial
and thus we will assume N�3.

Using L0 and L1 moves, we can deform EN as follows:

EN � E N&1N � NE N&1 � NE N&2N � N 2EN&2 (1)

where we have assumed that the distance between |(0) and the upper
boundary of the strip is at least 2. If this is not the case, by hypothesis, the
distance between |(0) and the lower boundary of the strip is at least 2,
so that the rod EN can be analogously reduced to S 2EN&2. The steps we
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will present below should then be changed replacing N by S. Then, by
repeatedly performing the following sequence ( p�2)

WkN 2E p � WkN 2E p&1S � W kN 2ESE p&2 � Wk+1NE p

� Wk+1NE p&1N � Wk+1N 2E p&1 (2)

we deform the walk into WN&3N 2E. Finally

WN&3N 2E � WN&3N 2W � W N&2N 2 � WN K (3)

The proof of lemma 1 requires a technical hypothesis about the distance
between |(0) and the boundaries of the strip. For w>2, this condition is
always satisfied. In the following we will consider walks such that |(0) is
not a nearest neighbour of a boundary of the strip. In this particular case,
the hypothesis of Lemma 1 is also satisfied for w=2, and thus for all w�2.

Lemma 2. Consider a quotient-directed walk | in a two-dimen-
sional strip of width w�2 and suppose that |(0) is not a nearest
neighbour of a boundary of the strip. Then, | can be reduced to any given
rod using the kink-kink bilocal algorithm.

Proof. Consider |� =|�T (l, h), and assume that all steps of |� are
directed in the N, E directions. It is immediate to verify that, by using L0
and L1 moves, one can modify the walk obtaining one of these four
possibilities:

(a) N k1Ek2N hEShEk3;

(b) N k1Ek2ShEN hEk3;

(c) Ek1N k2EhNW hN pEk3;

(d) Ek1N k2WhNE hN pEk3.

We assume h>0; otherwise, the walk is already directed and it can be
reduced to any rod by Lemma 1. In case (a), we can use L0 moves to
modify the walk into N k1+hEk2+k3+1S h, and then, combining L0 and L1
moves, into N k1+hE h+k2+k3+1. The new walk is directed and, by Lemma 1,
it can be reduced to any given rod.

In case (b), using L0 and L1 moves, we modify the walk as follows:

| � N k1Ek2ShEk3+1N h � N k1Ek2S hE k3+1N h&1E � N k1Ek2S hEk3+2N h&1

� N k1Ek2ShE h+k3+1 � } } } � N k1E h+k2+k3+1S h � N k1Eh+k2+k3+1Sh&1E

� } } } � N k1E h+k2+k3+2S h&1 � } } } � N k1E2h+k2+k3+1 (4)

which is directed. By Lemma 1, it can be reduced to any given rod.

1121Bilocal Dynamics for Self-Avoiding Walks



Let us now consider case (c). If p>1, using L0 and L1 moves, we can
deform the walk into a new one with p=1. If p=1 and k3>0, using B22
moves we obtain

Ek1Nk2 E hNWhNEk3 � E k1N k2E h+1NW hNE k3&1

� } } } � Ek1N k2E h+k3NWhN (5)

Then, using L0 and L1 moves, we can deform the walk as follows:

Ek1N k2E h+k3NWhN � Ek1N k2E h+k3NW h+1

� } } } � Ek1+k3+hN 1+k2Wh+1

� Ek1+k3+hNWh+k2+1 (6)

It is obvious that these last transformations can also be applied when p=0
(in this case we have also k3=0). Therefore, all walks can be transformed
into new ones of the form E pNW q. If q=0, the walk is directed, while for
q=1 we can transform it into E pNE which is also directed. For q�2, we
transform the walk into E pN 2Wq&1. Since |(0) is not a nearest neighbour
of the boundary, there is no obstruction to this transformation. If q=2, by
means of an L1 move, we obtain a directed walk. For q�3, we apply
repeatedly the following sequence

E pN 2Wq&1 � E pN 2Wq&2S � E pN 2WSWq&3

� E p+1NW q&1 � E p+1N 2W q&2 (7)

obtaining a walk with q=2 and then a directed walk. Using Lemma 1, the
walk can be reduced to any rod.

Finally we consider case (d). If k2=0, since h>0, we have k1=0.
Then using L0 moves we can deform the walk into WhN p+1Ek3+h. If
k2>0, using L0 moves we can modify the walk into Ek1NW hN k2+ pEh+k3.
Then, by applying repeatedly the transformation

| � Ek1&1NW hNEN k2+ p&1Ek3+h � Ek1&1NW hN k2+ pEk3+h+1 (8)

we obtain a new walk of the form NW hN k2+ pE k1+k3+h and then
WhN k2+ p+1Ek1+k3+h. Thus the walk can always be deformed into a new
one of the form W pN lE q, which can be reduced to a rod following the
method applied to E pNWq. K

It should be noticed that the hypothesis of Lemma 2 is a necessary
condition for its validity. Indeed, consider a walk with |(0)=(0, 1),

1122 Caracciolo et al.
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|(N&2)=(&1, 0), |(N&1)=(0, 0), |(N )=(1, 0). This walk cannot be
deformed into a rod, since the endpoint is frozen. This hypothesis is not
required if one considers walks for which the first point is not fixed, allowing
moves L1 also on the first step of the walk.

Lemma 3. Consider a walk | in a two-dimensional strip of width
w�2. Then, | can be reduced to a quotient-directed walk using the kink-
kink bilocal algorithm.

Proof. Let us first introduce a few notations. To every walk | (which
is not a rod) with tower T (l, h) we associate a triple (|, T (l, h), t). In order
to define t, set |� =|�T (l, h) and consider R[|� ]. Define R1 and R2 as the
two sides of R[|� ] which are perpendicular to the boundary of the strip.
Let us introduce coordinates so that the x-axis is along the strip. If R1 and
R2 have equations x=x1 and x=x2 respectively, and (x0 , y0), (xN , yN)
are the coordinates of |(0) and |(N ) respectively, it is not restrictive to
assume |x1&xN |� |x1&x0| and x1�x2 . If |x1&xN |{0, set t=0.
Otherwise, find the smallest x� such that the line x=x� contains a step of |�
or the starting point |(0). Then, set t=x� &x1 . See Fig. 6 for an example.

The proof is by induction. The inductive step is the following: given
(|, T (l, h), t) such that |� is not directed, the tower is parallel to the strip,
all points of T (l, h) lie on the W-side with respect to the base, and |(0)
does not belong to the line x=x1+t, then there is a sequence of moves

Fig. 6. Definition of t when |x1&xN |=0. The dotted line has equation x=x� , h is the height
of the tower and l its base.
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such that: (a) the new walk also has a tower parallel to the strip, lying on
the W-side with respect to the base; (b) one of the following two
possibilities is verified: (b1) t increases; (b2) t remains constant and h, the
height of the tower, increases.

To start the induction, it is sufficient to assume h=0 and choose as l
an arbitrary step perpendicular to the boundary of the strip (it exists since
|� is not a rod). At the end of the inductive process we will obtain a new
walk, which we will continue to name |, such that either |� is directed or
|(0) belongs to the line x=x1+t. In the first case, we have finished. The
second case will be discussed at the end.

Let us now prove the inductive step. Let us first suppose that
x=x1+t contains a C-turn |� [k, m]. Note that, because of the definition
of t, |� [k, m] will be of the form WN m&k&iE or WS m&k&iE. Then, if the
base of the tower does not yet belong to |� [k+1, m&1], use B22 moves
to move the tower so that the base is 2|� (a), k+1�a�m&2, and the
tower lies on the W-side of the base. It is easy to see that, thanks to the
definition of t, this is always possible. If |� [k, m] is unobstructed, then by
applying L0 moves it is possible to modify |� [k, m] in such a way that the
subwalk of | connecting |� (a&1) and |� (a+2) is a tower directed to W
of height h+1. In this way, either t increases by one (requirement (b1)) or
t remains constant but h increases by one (requirement (b2)).

If |� [k, m] is obstructed, there exists an unobstructed C-turn |� [i, j ]
(see Theorem 1). If the base of the tower does not belong to |� [i, j ],
reduce it to a kink, cut it and increase the height of the tower by one. If
it contains the base of the tower, let us notice that |� [k, m] must have
length at least 4 as it is obstructed. Therefore, there exists a step belonging
to |� [k+1, m&1] which does not belong to |� [i, j ]. Then, move the
tower on this link (this can be done simply by B22 moves if this link is not
adjacent to the base of the tower, or by L0 moves if this is not the case)
and at this point reduce |� [i, j ] to a kink, and then increase the height of
the tower by one, using B22 moves. In both cases, thanks to the definition
of t, the tower can always grow in the W-direction. In this case t remains
constant, but h increases by one.

Let us now suppose that the line x=x1+t does not contain any
C-turn. Since, by hypothesis, it does not contain |(0), it can contain only
a subwalk |� [i, j ] such that either j=N&2h or |� [ j, N&2h] is a line per-
pendicular to R1 , lying on the W-side of x=x1+t. If the base of the tower
does not belong to |� [i, j ], with an appropriate choice of y-direction, we
have |[i, N]=SN&i&tW t. Then, using L0 and L1 moves, it is trivial to
modify the walk into a new one such that |[i, N]=WN&i. Therefore,
t increases by at least | j&i |, proving the inductive step. If the base of the
tower belongs to |� [i, j ], with an appropriate choice of y-direction,

1124 Caracciolo et al.



|[i, N] is of the form Sk1WhSEhSk2W t with h>0. Moreover, if x l is the
x-coordinate of |(l ), we have xl>x� for all l<i. We will now distinguish
two cases: (1) k2>0, (2) k2=0.

If k2>0, using L0 moves, we can rewrite it as S k1+k2&1WhSEhSW t.
Then, using B22 moves followed by local transformations L0, we have

SqWhSEhSW t � S qWh+tSEhS � S qWh+tS 2E h (9)

If h>1 we can repeatedly modify the walk as follows:

SqW h+tS2E h � SqWh+tS2E h&1N � S qWh+tS2ENEh&2

� SqWh+t+1SEh � S qWh+t+1SE h&1S

� SqWh+t+1S2Eh&1 (10)

In this way, we obtain a walk with the original form and h=1. But a walk
SqW pS2E can be modified into S qW pS2W, and then, by means of L0 and
L1 moves, into a rod W p+q+3. Therefore, in case (1), the subwalk |[i, N]
can be transformed into a rod.

Let us now consider the case k2=0. Since h>0, we should have t=0
so that |[i, N] � Sk1WhSEh. If the endpoint of the walk does not belong
to the boundary of the strip we can repeat the steps presented for case (1).
If the endpoint belongs to the boundary and k1>0, we can use L0 moves
to modify the walk into Sk1&1WhS2E h, which can be transformed into a
rod as discussed in case (1). If k1=0, since w�2, we can apply the following
transformations: if h=1, then

|[i, N]=WSE � WSW � W2S � W 3 (11)

if h=2, then

|[i, N]=W2SE2 � NWS 2E � NWS 2W

� NW2S 2 � } } } � NW4 � } } } � W5 (12)

if h>2, then

|[i, N]=WhSEh � NWSW h&2SE h&1 � NWh&1S 2E h&1

� NWh&1S 2E h&2N � NW h&1S 2ENE h&3

� NWhSEh&1 � } } } � NW hS 2Eh&2 � } } } � NW2h&3S2E

� NW2h&3S 2W � } } } � NW 2h � } } } � W 2h+1 (13)

Therefore, in all cases we deform |[i, N] into a rod. For the new walk, the
variable t increases at least by 2h+1 as required.
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The proof of the inductive step is complete. In this way, we have
shown that in a finite number of steps we obtain a walk | which is
quotient-directed or is such that x0=x1+t. In the latter case, if x2=x0 ,
|� is L-shaped and thus directed. Thus, we need only to study the case
x2>x0 . Again we will proceed by induction. We assume that the walk |
has a tower parallel to the strip which lies on the E-side with respect to the
base. At the beginning notice that R2 must certainly contain a C-turn as it
contains none of the endpoints. Then, move the tower oh this C-turn. This
is always possible. Then, we show that, as long as x2>x0 and the walk
is not directed, we can modify it in such a way that the tower increases
in height. The argument is exactly identical to the one we have previously
discussed for the case in which a C-turn exists on the line x=x1+t. There-
fore, in a finite number of steps, we obtain a walk with x2=x0 . As we
already discussed, this walk is quotient-directed. K

It is now trivial to state the ergodicity theorem for the kink-kink bilocal
algorithm which is a simple consequence of the lemmas we proved above:

Theorem 3. Consider a walk | in a two-dimensional strip of width
w�2 and suppose that |(0) is not a nearest neighbour of a boundary of
the strip. Then, | can be reduced to a given rod using the kink-kink bilocal
algorithm.

The result we presented above applies only to the two-dimensional
case. Indeed, the algorithm is not ergodic in three dimensions. For
instance, consider the walk (N=18)

|#(&y)2 (x)(z)2 (&x)2 (&z)3 (x)2 ( y)(z)2 (&x)(&y)2 (14)

By direct enumeration, one can verify that it cannot be reduced to a rod.
The kink-kink bilocal algorithm can also be used to simulate ring

polymers. It is enough to exclude the L1 moves. Such an algorithm was
considered in refs. 38 and 39. It is clear that this algorithm is not ergodic
in three dimensions since it does not change the knot type of the ring. We
will now prove its ergodicity in a two-dimensional strip. We will need the
following lemma:

Lemma 4. In two dimensions, consider a closed walk |, with N>4
steps. It contains an unobstructed C-turn |[i, j ] with 0�i< j<N.

Proof. Consider w=|[0, N&1]. It is not directed, and thus, by
Theorem 1, it contains an unobstructed C-turn |[i, j ] with 0�i< j<N.
Since N>4, it is also unobstructed in |. K
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We can now prove the ergodicity of the algorithm.

Theorem 4. Consider a lattice point x in a two-dimensional strip
and the ensemble Rx, N of N-step self-avoiding polygons such that |(0)=
|(N )=x. The kink-kink bilocal algorithm without L1 moves is an ergodic
algorithm for Rx, N .

Proof. The proof is similar to that of Lemma 3. Consider a walk |
with tower T (l, h) along the strip and let |� =|�T (l, h).

We will now prove the following: if the length of |� is larger than 4,
we can modify the walk into a new one |$ with tower T (l $, h$) parallel to
the strip and h$>h. Therefore, in a finite number of steps, |� is reduced to
a square of length 4 and | is a rectangle of height one. It is trivial to show
that all these rectangles can be modified one into the other ending the
proof.

To prove the previous statement, first notice that at least one of the
boundaries of the enveloping rectangle R[|� ] perpendicular to the strip
does not contain |(0) and contains a C-turn |� [k, m], 0�k<m�N.
Using B22 moves, we first move the tower on a link l # |� [k+1, m&1],
adding kinks on top of this link, outward with respect to R[|� ]. If |� [k, m]
is unobstructed, we can increase the height of the tower using L0 moves;
otherwise, by Lemma 4, there exists an unobstructed C-turn |� [i, j ] such
that |(0) � |� [i+1, j&1]. As we already discussed in Lemma 3, such a
C-turn can be reduced to a kink which is then moved on top of the tower,
increasing its height. K

3.4. Ergodicity for the Extended Reptation Algorithm

We will now prove the ergodicity in two dimensions of the extended
reptation algorithm. We do not know whether this algorithm is ergodic for
larger values of d.

Theorem 5. The extended reptation algorithm is ergodic in d=2,
for w#w2�1.

Proof. The proof is similar to that of Lemma 3. We assume we have
a walk | with a tower T (l, h) parallel to the x-axis. Then, we consider the
enveloping rectangle R[|� ]: R1 and R2 are the two sides of R[|� ] per-
pendicular to the boundary of the strip. We will now show that it is
possible to deform the walk so that one of the endpoints belongs either to
R1 or to R2 (defined for the new walk).

The proof is by induction: Consider a walk | such that none of the
endpoints belongs to R1 or R2 , which has a tower T (l, h) parallel to the
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x-axis, l belonging to R1 . Then, we can deform it into a new walk with
tower T (l $, h+1) parallel to the x-axis, l $ belonging to R1 . To prove this
statement, notice that R1 must contain a C-turn |� [i, j ]. If l � |� [i+1, j&1],
using B22 moves, we can modify the walk so that it has a tower of height
h on a link belonging to |[i+1, j&1] on the W-side with respect to R1 .
Since the walk has a C-turn, by Theorem 1, it has an unobstructed C-turn.
If |� [i, j ] is unobstructed, we can reduce it to a kink obtaining a tower of
height h+1. If |� [k, l] with l<i or k> j is unobstructed, we can reduce it
to a kink and use a B22 move to move the kink on top of the tower
increasing its height. We must, then consider the special cases in which
|� [i, j ] & |� [k, l] is not empty and |� [i, j ] is obstructed. It is easy to
realize that one should have l=i+2 or k= j&2 and that they can be
treated similarly. If l=i+2, since | j&i |�4 (|� [i, j ] is obstructed), we can
modify the walk (if needed) so that the base of the tower does not belong
to |� [k, l]. Then, we reduce it to a kink, and move it on top of the tower
increasing its height. If k= j&2, we can proceed analogously. We have
thus proved the inductive step. Therefore, in a finite number of steps we
can modify the walk into a new one such that: (a) one of the endpoints
belongs to R1 or R2 ; (b) the base of the tower belongs to R1 . If one of the
endpoints belongs to R2 , using reptation moves in the E-direction, we can
reduce the walk to a rod. If none of the endpoints belongs to R2 , an
endpoint belongs to R1 and R2 contains a C-turn |� [i, j ]. Then, by means
of B22 moves, one can move the tower on one of the links belonging to
|� [i, j ], so that all points of the tower lie on the E-side with respect to the
base. Then, consider the endpoint belonging to R1 . Using reptation moves
in the W-direction, we can reduce the walk to a rod. Finally note that, if
w�1, the two rods EN and W N can be deformed one into the other. We
have thus proved the ergodicity of the algorithm. K

It is easy to see that the moves that are added to the reptation algo-
rithm (L0 and B22) are necessary for the ergodicity of the algorithm.
Indeed consider the walk with N=22:

N 2W2S2ESE2N 2E 2SES2W 2N 2 (15)

It is easy to see that it cannot be deformed without using L0 moves. The
walk with N=13

NWS2E2NE 2S 2WN (16)

requires instead the B22 moves to be reduced to a rod.
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Fig. 7. With the definitions given in Theorem 6, the dotted vertical lines have equations
x=x� \. The step in boldface on the left is an S-step, while the step in boldface on the right
is a step belonging to x=x� + that does not have an empty shadow and is not an S-step.

3.5. Ergodicity for the Kink-End Reptation Algorithm

In this Section we consider the kink-end reptation algorithm. We show
that this algorithm is ergodic in any cylinder in d�3 and in the presence
of a single surface (or in free space) in two dimensions. This algorithm is
not ergodic in a two-dimensional strip. However, ergodicity is recovered by
adding L0 moves.

Theorem 6. For d�3, the kink-end reptation algorithm is ergodic
for w#mini wi�1 and N�3.

Proof. In order to prove the theorem, let us introduce some useful
definitions. We say12 that a walk step 2|( j), 1� j�N&4, is an S-step (see
Fig. 7) if 2|( j&1)=2|( j+1) are directed in the (\x)-direction, while
2|( j) is orthogonal to them. Note that we indicate by x the first direction
which, by definition, is always infinite. Given a walk step 2|( j) which is
not in the (\x)-direction, we also define its positive and negative shadow.
If x̂ is the unit vector (1, 0,..., 0), the positive shadow is the set of lattice
points [|( j)+nx̂, |( j+1)+nx̂ : n # Z+], where Z+ is the set of positive
integers. The negative shadow is defined analogously, considering n # Z&,
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Fig. 8. The sequence of moves that generates a new walk |$ such that |$[ j, N&2] is a rod
in the (\x) direction. The dashed line in the upper part of the figure indicates an arbitrary
subwalk. The dotted line is the line of equation x=x� +.

Z& being the set of negative integers. We say that 2|( j) has an empty
shadow, if its positive or negative shadow contains none of the walk sites
|(k), 0�k�N&2. To understand the relevance of this definition, note
that, if 2|( j) has an empty shadow, then (see Fig. 8) we can perform end-
kink moves by adding kinks on top of 2|( j), obtaining eventually a new
walk |$ such that |$[ j, N&2] is a rod in the (\x)-direction. Note that,
by definition, the last two walk sites may belong to the shadow. However,
they do not represent an obstruction for the end-kink moves since the last
two steps are deleted in the first iteration of the process.

The proof of the theorem is based on the following inductive step:
given a walk | such that the subwalk |[i, N&2], 0<i�N&2, is a rod
in the (\x)-direction, we can deform it into a new walk |$ such that, for
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some j<i, |$[ j, N&2], is a rod in the (\x)-direction. Note that it is
possible that, at the beginning of the induction process, i=N&2: it simply
means that 2|(N&3) is not in the (\x)-direction. This inductive step
allows to prove that, in a finite number of steps, any walk can be deformed
into (\x)N&2 X where X is a two-step walk. Then, since w�1 and N�3,
with an appropriate choice of the y-axis, we can deform it as follows:

(\x)N&2 X � y(\x)(&y)(\x)N&2 � (\x)N (17)

Thus all walks can be deformed into a rod (\x)N. Finally, it is easy to
show that the rod (+x)N can be deformed into (&x)N, proving the
ergodicity of the algorithm.

To prove the inductive step, let us introduce coordinates |(k)=
(xk , yk , zk ,...) and define x� & (resp. x� +) as the smallest (resp. largest) value
of x such that there exists a walk site |(k), k<N&2, with xk=x� \ and
2|(k) not in the (\x)-direction. If |[0, N&2] is not a rod in the (\x)-
direction, x� & and x� + certainly exist although they may coincide.

Now, consider the links belonging to the hyper-surfaces x=x� & and
x=x� +. Suppose that one of them 2|(l ), l<N&2, is not an S-step. It is
not restrictive to assume that it belongs to x=x� +. We will now show that
there exists j<i such that the step 2|( j) belongs to x=x� + and has an
empty shadow. If 2|(l ) has an empty shadow, we can take j=l. Since
l<N&2, and all steps 2|(i),..., 2|(N&3) are in the x-direction, we have
j<i. If 2|(l ) does not have an empty shadow, there are two possibilities:
(a) 2|(l&1) is oriented in the negative x-direction; (b) 2|(l+1) is
oriented in the positive x-direction. We will consider only case (a) since
case (b) is completely analogous. In case (a) (see Fig. 7) we will now show
that 2|(l+1) has an empty shadow and that l+1<i, so that we can take
j=l+1. To prove this statement we will show the following: (a1) l<N&3;
(a2) 2|(l+1) belongs to x=x� +; (a3) 2|(l+2) cannot be oriented in the
positive x-direction. From (a2) and (a3) we see that 2|(l+1) has an
empty positive shadow, while (a2) and (a1) allow to conclude l+1<i as
required. To prove (a1), note that, if (a1) were not true, we would have
l=N&3 and the walk would be of the form (&x)N&3 d l X, where X#
|[N&2, N] and dl is the direction of 2|(l ). But this implies that 2|(l )
has an empty (negative) shadow, which is against the initial assumption.
To prove (a2), note that 2|(l+1) cannot be oriented in the negative
x-direction; otherwise, since l<N&3, 2|(l ) would be an S-step. If it were
directed in the positive x-direction, then the walk would be (&x)l dlxN&l&3X
where dl is the direction of 2|(l ) and X indicates the last two steps. But in
this case 2|(l ) would have an empty (negative) shadow. Therefore, (a2) is
proved. If (a3) were not true, the walk would be (&x) l dldl+1xN&l&4X,
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where dl and dl+1 are the directions of 2|(l ) and 2|(l+1) respectively,
and, therefore, 2|(l ) would have an empty (negative) shadow, against the
initial hypothesis.

If 2|( j) has an empty shadow, then we can deform the last steps of
the walk as follows (we assume, without loss of generality, to have a
positive empty shadow):

|[ j, N] � xy(&x) } } } � x2y(&x)2 } } } � } } } � xN&2& jy(&x) (18)

where y is the direction of 2|( j) (see Fig. 8). We have thus proved the
inductive step.

Let us now suppose that all walk steps belonging to x=x� & and
x=x� + are S-steps. In this case it is easy to convince oneself that, with an
appropriate choice of axes, the walk has the form x pyXxhY, where p>0,
h>0, X is the subwalk |[ p+1, N&h&2] and Y is the configuration of
the last two steps. Clearly, if |(k) # X, then x� &<xk�x� +. If x� &=x� +,
X is empty and |=x pyxhY. Consider now 2|( p) which is the only walk
step13 (as it can be seen from the explicit expressions above) belonging to
the face x=x� &. Since w�1, it is possible to fix the positive z-direction in
such a way that |( p)+ẑ (ẑ is the unit vector in the positive z-direction)
is inside the cylinder. Then, we deform the walk as follows:

| � zx(&z) x p&1 } } } � (&x) zx2(&z) x p&1 } } } � (&x)N&2 zx (19)

Thus, we can take j=0, proving the inductive step. K

It is easy to see that this algorithm is not ergodic in a two-dimensional
strip of width w#w2 . Consider, for instance, the following walk of length
N=(4w+2) k+2:

((EN )w E(ES)w E )k E2 (20)

k�1. It is easy to verify that it cannot be modified by the algorithm.
The previous theorem can be extended to two dimensions in free

space, or in the presence of a single boundary, i.e., for w=�.

Theorem 7. In two dimensions, the kink-end reptation algorithm
is ergodic for N�3, in the presence of a single boundary or in free space.

Proof. The proof is similar to that of Theorem 6. Again, we want to
prove that, given a walk | such that |[i, N&2], 0<i�N&2, is a rod in
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the (\x)-direction, we can deform it into a new one |$ such that, for some
j<i, |$[ j, N&2] is a rod in the (\x)-direction. Using the same notations
of Theorem 6, the reader can convince himself that we should only modify
the proof of the inductive step in the case in which only S-steps belong to
the lines x=x� & and x=x� +. In this case, with a proper choice of axes, the
walk has the form

|=E pNXEhY (21)

p�1, h�1, where X is the subwalk |[ p+1, N&h&2] which is con-
tained between the lines x=x� \ and Y=|[N&2, N]. If |( p) does not
belong to the boundary, we can modify the walk as follows:

|=E pNXEhY � SENE p&1NXEh � WSE2NE p&1 } } } � WN&2SE (22)

so that we can take j=0, proving the inductive step.
We should finally discuss the case14 in which |[0, p] belongs to the

boundary y=0. Let y� be the largest value of ny such that there exists a
walk step 2|(l ), l<N&2, belonging to the line y=ny . First we show that,
if yk> y� ( yk is the y-coordinate of |(k)), then k=N&1 or k=N. Indeed,
since y0=0, if we had yk> y� and k�N&2, then |[k&1, N&2] would
point N which is in contrast with (21). Now, consider the sites belonging
to the line y= y� and let |(k) be the site with smallest k. Clearly k�i.
Note, moreover, that 2|(k&1) is in the positive y direction. Indeed, it
does not lie on y= y� , otherwise |(k&1) would lie on this line (remember
that |(k) is the walk site with smallest k belonging to this line). It is not
oriented in the negative y-direction, otherwise, yk&1> y� . For the same
reason, 2|(k+1) is not in the positive y-direction, unless k+1=N&2.
Then, we can use end-kink moves to put kinks on top of 2|(k) in the
positive y direction. There is no obstruction to these moves, since the only
possible walk sites that can have a larger y are the last two sites that are
removed in the first iteration of the process. In this way we modify the walk
into a new one (we keep calling it |) such that |[k&1, N&2] is a rod
directed in the positive y-direction.

Now, let x~ be the largest x such that there exists a walk step 2|(l ),
l<N&2, belonging to the line x=x~ . Consider the steps belonging to this
line and let j be the smallest integer such that 2|( j) belongs to x=x~ .
Clearly j�k&1<k�i. Since |[0, p], p>0 is directed E and |[k&1,
N&2] is directed N, 2|( j) has an empty positive shadow. Therefore, by
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means of end-kink moves, we modify the walk so that |[ j, N&2] is a rod
in the positive direction. Since j<i, we have proved the inductive step. K

If one considers two dimensional strips, an ergodic algorithm can be
obtained by adding L0 moves.

Theorem 8. In two dimensions the kink-end reptation algorithm
with L0 moves is ergodic for N�3 and w2�1.

Proof. The proof is identical to that of Theorem 6. We should only
change the proof of the inductive step for the case in which there are only
S-steps on the lines x=x� \. With a proper choice of axes the walk has the
form (21). Then, using L0 moves, we modify the walk as follows

|=E p&1NE } } } � } } } � NE p } } } (23)

Then, using end-kink moves,

| � WNE p+1 } } } � } } } � WN&2NE (24)

which can be deformed into a rod. K

Although the kink-end reptation algorithm is ergodic in two dimen-
sions in the absence of confining surfaces, the proofs of the theorems
indicate that ``staircase'' sections of the walk (for instance sections of the
form } } } ENENENEN } } } ) will be changed very slowly by the algorithm.
Therefore, in order to have an efficient implementation, it is probably useful
to include in all cases the L0 moves.

4. TRANSITION MATRICES

In the previous Section we have discussed the ergodicity of the algo-
rithms. Now, we discuss how to implement them in order to obtain the
correct probability distribution. Here we will discuss how to use them to
generate walks with uniform probability in the ensembles Ex, N or EN . Any
other probability distribution can be obtained by adding a Metropolis test
or a generalization thereof.15

4.1. Kink-Kink Bilocal Algorithm

We will begin by considering the kink-kink bilocal algorithm.
Although not necessary to ensure the ergodicity of the algorithm, we will
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Fig. 9. Configurations of three consecutive links: (a) configuration of type I; (b) configura-
tion of type L; (c) configuration of type S; (d) configuration of type U.

also add the local L00 (crankshaft) moves. In order to describe the algo-
rithm it is important to classify the possible configurations of three suc-
cessive links (see Fig. 9):

1. the bonds have the same direction (I configuration);

2. two consecutive bonds have the same direction, while the third
one is perpendicular to them (L config.);

3. the first and the third bond are perpendicular to the second one,
and they are either parallel or perpendicular to each other (S config.);

4. the first and the third bond are perpendicular to the second one,
and they are antiparallel to each other (U config.).

The algorithm works as follows:

v Step 1. Choose a random site i of the current walk |, 0�i�N.
If i=N, propose an L1 move and go to step 5.

v Step 2. Determine the configuration of the subwalk |[i&1, i+2].
If i=N&1, we imagine adding a link 2|(N ) parallel to 2|(N&1), so that
the possible configurations are of type L and I. Analogously, if i=0, we
imagine adding a link 2|(&1) parallel to 2|(0).

v Step 3. Draw a random number r, uniformly distributed in [0, 1].
Depending on the configuration of |[i&1, i+2], do the following:

1. I: If r>(2d&2) p(22), perform a null transition and the itera-
tion ends. Otherwise, go the next step.

2. L: If r>(2d&3) p(22)+ p(0), perform a null transition and the
iteration ends. If (2d&3) p(22)<r<(2d&3) p(22)+ p(0), propose an L0
move and go to step 5. Otherwise, go to the next step.
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3. S: If r>(2d&4) p(22)+2p(0) perform a null transition and the
iteration ends. If (2d&4) p(22)<r<(2d&4) p(22)+2p(0) propose an L0
move: there are two possibilities which are chosen amongst randomly; then
go to step 5. Otherwise, go to the next step.

4. U: If r>1&(2d&3) p(00) propose an L00 move: there are
(2d&3) possibilities which are chosen amongst randomly; then, go to
step 5. Otherwise, go to the next step.

v Step 4. Choose a second integer j uniformly in the disjoint intervals,
&1� j�N, j{i&1, i, i+1. If j=&1, N make a null transition and the
iteration ends. Otherwise, depending on the configuration of |[i&1,
i+2], do the following:

�� |[i&1, i+2] is of type I, S, L: if j=0 or j=N&1, or if
|[ j&1, j+2] is not of type U perform a null transition and the iteration
ends. Otherwise, propose a B22 move, cutting the kink |[ j&1, j+2] and
adding it to |[i, i+1] in one of the possible directions.16 Then, go to the
next step.

�� |[i&1, i+2] is of type U: according to the configuration of
|[ j&1, j+2] (if j=0, N&1 imagine adding links as before) do the
following:

1. |[ j&1, j+2] is of type I: If r<(2d&2) p(22) (note that the
random number r appearing here is the same used in Step 3.), propose a
B22 move: cut the kink |[i&1, i+2] and add it on top of |[ j, j+1] in
a possible random direction, and then go to step 5. Otherwise, perform a
null transition and the iteration ends.

2. |[ j&1, j+2] is of type L: If r<(2d&3) p(22), propose a
B22 move: cut the kink |[i&1, i+2] and add it on top of |[ j, j+1] in
a possible random direction, and then go to step 5. Otherwise, perform a
null transition and the iteration ends.

3. |[ j&1, j+2] is of type S: If r<(2d&4) p(22) propose a
B22 move: cut the kink |[i&1, i+2] and add it on top of |[ j, j+1] in
a possible random direction, and then go to step 5. Otherwise, perform a
null transition and the iteration ends.

4. |[ j&1, j+2] is of type U: If r<(2d&3) p(22), propose a
B22 move: cut the kink |[i&1, i+2] and add it on top of |[ j, j+1] in
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a possible random direction, and then go to step 5; if (2d&3) p(22)<r<
2(2d&3) p(22), propose a B22 move: cut the kink |[ j&1, j+2] and add
it on top of |[i, i+1] in a possible random direction, and then go to
step 5. Otherwise, perform a null transition and the iteration ends.

v Step 5. Check for self-avoidance. If the proposed new walk is self-
avoiding keep it, otherwise perform a null transition.

The algorithm we have presented depends on three probabilities p(0),
p(00) and p(22) that are the probabilities of an L0, L00 and B22 move
respectively. It is easy to check that the algorithm satisfies detailed balance
so that the walks are generated with the correct probability distribution.
We should now determine the single probabilities that must be such to
satisfy the obvious constraint

:
|$

P(| � |$)=1 (25)

Considering the configurations I, L, and S we obtain the constraints

(2d&2) p(22)�1 (26)

(2d&3) p(22)+ p(0)�1 (27)

(2d&4) p(22)+2p(0)�1 (28)

If |[i&1, i+2] is of type U, we obtain, depending on the configuration
of |[ j&1, j+1]:

(2d&2) p(22)+(2d&3) p(00)�1 (29)

(2d&3) p(22)+(2d&3) p(00)�1 (30)

(2d&4) p(22)+(2d&3) p(00)�1 (31)

2(2d&3) p(22)+(2d&3) p(00)�1 (32)

These conditions impose for d�2:

(4d&6) p(22)+(2d&3) p(00)�1 (33)

(2d&4) p(22)+2p(0)�1 (34)

A solution of these inequalities which maximizes p(0) and p(00) at p(22)
fixed, is
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p(0)=
1
2

[1&(2d&4) p(22)] (35)

p(00)=
1

2d&3
[1&(4d&6) p(22)] (36)

p(22)�
1

4d&6
(37)

Since the L00 move is not necessary for the ergodicity of the algorithm,
while the B22 one is essential to ensure a fast dynamics, it is natural to
require p(22) to be maximal, even if this implies p(00)=0. Then, we obtain
the following transition probabilities:

p(0)=
d&1
4d&6

(38)

p(00)=0 (39)

p(22)=
1

4d&6
(40)

In two dimensions p(0)= p(22)=1�2, while in three dimensions p(0)=1�3
and p(22)=1�6.

4.2. Extended Reptation Algorithm

This algorithm extends the standard reptation method. The reptation
(or slithering-snake) algorithm has two different implementations. The first
one, which satisfies detailed balance, works as follows:

v Step 1. With probability 1�2 delete |[N&1, N] and add a new link
at the beginning of the walk; otherwise, delete |[0, 1] and add a new link
at the end of the walk.

v Step 2. Check if the new walk is self-avoiding. If it is keep it,
otherwise perform a null transition.

A second version uses an additional flag which specifies which of |(0)
and |(N ) is the ``active'' endpoint. It works as follows:

v Step 1. Delete one bond at the ``active'' endpoint and append a new
one at the opposite end of the walk.

v Step 2. If the new walk is self-avoiding keep it, otherwise stay with
the old walk, and change the flag, switching the active endpoint.
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This algorithm17 does not satisfy detailed balance, but it satisfies the sta-
tionarity condition generating the correct probability distribution.

The extended reptation algorithm consists in combining with non-zero
probability the reptation algorithm and the kink-kink bilocal algorithm.
More precisely the algorithm works as follows:

v Step 1. With probability p perform a reptation move, with probability
1& p a kink-kink bilocal move, as specified in the previous section.

Note that in this algorithm the L1 moves are no longer needed. Therefore
one can modify Step 1. of the kink-kink bilocal algorithm choosing i such
that 0�i�N&1. The probability p is not fixed. It is only required that
0<p<1 to ensure the ergodicity of the algorithm. It can therefore be
tuned in order to obtain the best critical behaviour.

4.3. Kink-End Reptation Algorithm

The kink-end reptation algorithm uses kink-end and end-kink repta-
tion moves (see Fig. 4). We will present here two different implementations
of the algorithm which, however, are expected to have the same critical
behaviour.

Let us explain the first implementation. An iteration consists of the
following steps:

v Step 1. Choose a random site i of the current walk with 0�i�N&2.

v Step 2. Propose an end-kink move with probability (2d&2) p(EK )
or a kink-end move with probability (2d&1)2 p(KE ). In the first case
delete the last two bonds of the walk and insert a kink on the bond 2|(i)
in one of the (2d&2) possible orientations. In the second case, if i{0 and
|[i&1, i+2] is a kink, remove it and attach two bonds at the end of
the walk in one of the (2d&1)2 possible ways. Otherwise, perform a null
transition and the iteration ends.

v Step 3. Check if the proposed walk is self-avoiding. If it is keep it,
otherwise make a null transition.

Detailed balance requires p(KE )= p(EK )# p, while Eq. (25) implies

p�
1

(2d&1)2+(2d&2)
(41)
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Requiring p to be maximal, we obtain explicitly p=1�11 in d=2, and
p=1�29 in d=3.

The second implementation of the algorithm is similar to that of the
kink-kink bilocal algorithm. An iteration consists of the following steps:

v Step 1. Choose a random site of the current walk with 0�i�N&2.

v Step 2. Determine the configuration of the subwalk |[i&1, i+2]. If
i=0, we imagine adding a link 2|(&1) parallel to 2|(0).

v Step 3. Depending on the configuration of |[i&1, i+2], do the
following:

1. |[i&1, i+2] is of type I, L, S: set q=(2d&2) p(EK ) if of type
I, q=(2d&3) p(EK ) if of type L, q=(2d&4) p(EK ) if of type S. Then,
with probability q propose an end-kink move, deleting the last two steps
and adding a kink in one of the possible directions (see footnote 11).
Otherwise, perform a null transition and the iteration ends.

2. |[i&1, i+2] is of type U: with probability (2d&3) p(EK )
propose an end-kink move, deleting the last two steps and adding a kink
in one of the possible (2d&3) directions; with probability (2d&1)2 p(KE )
propose a kink-end move, cutting the kink and adding randomly two links
to the walk in random directions. Otherwise, perform a null transition.

v Check whether the proposed new walk is self-avoiding. If it is keep
it, otherwise make a null transition.

Detailed balance requires p(KE )= p(EK )# p, while Eq. (25) gives the
following constraints:

(2d&2) p(EK )�1 (42)

(2d&3) p(EK )�1 (43)

(2d&4) p(EK )�1 (44)

(2d&1)2 p(KE )+(2d&3) p(EK )�1 (45)

For d�1, these inequalities give

p�
1

(2d&3)+(2d&1)2 (46)

The most efficient algorithm corresponds to taking the equality in Eq. (46).
In two and three dimensions we obtain p=1�10 (d=2) and p=1�28
(d=3).
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5. DYNAMIC CRITICAL BEHAVIOUR

In order to understand the efficiency of an algorithm one should
analyze the autocorrelation time {. There are several different definitions18

for {: the exponential autocorrelation time {exp that controls the relaxation
of the slowest mode in the system and the integrated autocorrelation time
{int, O that depends on the observable O one is considering and that controls
the statistical errors on O. For N � �, one expects a dynamic critical
behaviour, i.e., {tN z, where the exponent z may depend on which
autocorrelation time one is considering.

We now derive lower bounds on the exponent z in the absence of
interactions. Let us consider global observables, like the squared end-to-
end distance R2

e and the squared radius of gyration R2
g . For bilocal algo-

rithms we expect(10, 49) {int, O -N 2. The basic assumption is that the slowest
mode appearing in global observables is associated to the relaxation of the
squared radius of gyration R2

g . Then, an estimate of { can be obtained as
follows. At each elementary step, R2

g changes by a quantity of order N 2&&1.
An independent configuration is reached when the observable changes
by one standard deviation N 2&. Assuming that the observable performs a
random walk, we obtain {t(N 2&�N 2&&1)2

tN 2. In practice the argument
should provide only a lower bound19 which we expect to be correct for all
global observables.

In particular, this should apply to the end-to-end distance R2
e . Here,

however, we should notice that our algorithms update the end-point of the
walk with very different frequencies. The extended reptation and the kink-
end reptation change |(N ) every O(1) iterations, while the kink-kink bilo-
cal algorithm updates |(N ) only every O(1�N ) iterations. Therefore, an
additional factor of N should be added for the kink-kink bilocal algorithm:
in this case, we expect {-N 3. It is interesting to notice that the kink-kink
bilocal algorithm behaves approximately as the algorithm of Reiter:(38)

indeed, also in this algorithm, the endpoint is updated, with frequency 1�N.
The available numerical results for very short walks (N�100) are in agree-
ment with the bound given above: they indicate {tN 3 in two and three
dimensions.
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19 In ref. 50 the following rigorous lower bound was obtained:

{int, O�
2 var(O)

C 2 &
1
2

(47)

where var(O) is the static variance of the observable O and C is the maximum change of O

in a single Monte Carlo step. In the heuristic argument given above, we have replaced C
by the average change of O in a single Monte Carlo step.



While Reiter's algorithm can be easily speeded up by increasing the
frequency of the BEE and BKE moves, no improvement is possible for the
kink-kink bilocal algorithm. Indeed, in this case it makes no sense to
increase the frequency of the L1 moves. Clearly, endpoint moves should be
performed with the same frequency of the moves that change the site
|(N&1), otherwise they do not effectively change the endpoint position.
But |(N&1) is updated by B22 and L0 moves with frequency 1�N. There-
fore, L1 moves should be performed with the same frequency.

Let us now discuss in more detail the different implementations of the
extended reptation and of the kink-end reptation algorithm. For the
extended reptation, we should choose between the two different implemen-
tations of the reptation dynamics. If one considers ordinary random walks,
it is obvious that a new walk is generated in O(N 2) iterations of the first
algorithm and in exactly N iterations of the second one. Thus the second
version is much more efficient than the first one. For SAWs we do not
expect such a big difference since the walk will move in a given direction
only for a small number of steps (r8 in two dimensions, r14 in three
dimensions in the absence of interactions). Therefore we expect an
improvement by a constant factor, and, indeed, simulations(41) show that in
three dimensions the second implementation is 5�6 times faster that the
first one. In the extended reptation we should also fix the parameter p.
From the discussion given above, it is clear that we must have p>0 as
N � �, otherwise the motion of the endpoints slows down the dynamics.
To fix its specific value, we may compare p to the probabilities of propos-
ing local and bilocal moves in the kink-kink bilocal algorithm. Assuming
that the probability of occuring of a I, L, U, and S configurations is inde-
pendent of the position of the walk site��it should be approximately true
for large values of N��the probability pb of a bilocal move B22 and the
probability pl of a local move L0 are given by

pb=2p(22) p(U)[(2d&2) p(I)+(2d&3)( p(L)+ p(U))+(2d&4) p(S)]

(48)

pl = p(0)( p(L)+2p(S)) (49)

To have a quantitative prediction we should know p(U), p(I), p(L), and
p(S). If we were considering non-reversal random walk we would have

p(U)=
2(d&1)
(2d&1)2 (50)

p(I)=
1

(2d&1)2 (51)
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p(L)=
4(d&1)
(2d&1)2 (52)

p(S)=
2(d&1)(2d&3)

(2d&1)2 (53)

so that

pb=
16(d&1)4

(2d&3)(2d&1)4 (54)

pl =
4(d&1)3

(2d&3)(2d&1)2 (55)

In two and three dimensions we obtain pbr0.1975, plr0.4444, and
pbr0.1365, plr0.4267 respectively. For SAWS the probabilities can be
computed by means of a short Monte Carlo simulation. The results are
reported in Table 1. In two dimensions we obtain pb=0.096, pl=0.500,
while in three dimensions pb=0.087, pl=0.446. Thus, in the extended rep-
tation algorithm, B22 moves are proposed with probability r0.1(1& p),
while reptation moves are proposed with probability p. If one wants to
balance these two types of moves��this is reasonable of one wants a physi-
cal kinetics��one should choose pt0.1. On the other hand, it is, clear that
reptation moves are more relevant than B22 moves. Indeed, reptation
moves are essential for the motion of the endpoint, while B22 moves are
required only to avoid the trapping of the endpoints. Thus we expect the
algorithm to be more efficient for larger values of p. The simulations(41)

indicate that the fastest dynamics is obtained for 0.5�p�0.9.
Finally, let us consider the kink-end reptation algorithm. We presented

two different versions and we discuss now their relative efficiency. The first
implementation chooses the move without checking the nearby bonds.
A deformation is always proposed but it may immediately fail because it
does not respect self-avoidance when one considers the neighbours of the
chosen bond. The second algorithm is more careful: the move is chosen
after considering the position of the nearby bonds. However, with a finite

Table I. Probabilities of the Different Configurations of Three Links

d p(I) p(L) p(U) p(S)

2 0.152 0.481 0.108 0.259
3 0.051 0.356 0.102 0.491
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probability, it performs a null transition. In order to compare correctly the
two implementations we should therefore compute:

(a) for the first algorithm, the probability of bilocal moves that do
not fail after checking the position of the two nearby bonds;

(b) for the second algorithm, the probability of proposing a bilocal
move.

For both algorithms an easy computation gives

pkink-end = p(U) p(2d&1)2 (56)

pend-kink= p[(2d&2) p(I)+(2d&3)( p(L)+ p(U))+(2d&4) p(S)] (57)

Therefore, the larger the value of p, the more efficient is the algorithm.
Since p in the first implementation is smaller than in the second one, the
second algorithm is more efficient than the first one. Of course, this should
be expected since the second one chooses the proposed move more care-
fully. However, the improvement in efficiency is small, approximately 100

in two dimensions and only 30 in three dimensions.
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